Abstract

BackgroundHistone acetyltransferases (HATs) play an important role in eukaryotic transcription. Eight HATs identified in rice (OsHATs) can be organized into four families, namely the CBP (OsHAC701, OsHAC703, and OsHAC704), TAFII250 (OsHAF701), GNAT (OsHAG702, OsHAG703, and OsHAG704), and MYST (OsHAM701) families. The biological functions of HATs in rice remain unknown, so a comprehensive protein sequence analysis of the HAT families was conducted to investigate their potential functions. In addition, the subcellular localization and expression patterns of the eight OsHATs were analyzed.ResultsOn the basis of a phylogenetic and domain analysis, monocotyledonous CBP family proteins can be subdivided into two groups, namely Group I and Group II. Similarly, dicotyledonous CBP family proteins can be divided into two groups, namely Group A and Group B. High similarities of protein sequences, conserved domains and three-dimensional models were identified among OsHATs and their homologs in Arabidopsis thaliana and maize. Subcellular localization predictions indicated that all OsHATs might localize in both the nucleus and cytosol. Transient expression in Arabidopsis protoplasts confirmed the nuclear and cytosolic localization of OsHAC701, OsHAG702, and OsHAG704. Real-time quantitative polymerase chain reaction analysis demonstrated that the eight OsHATs were expressed in all tissues examined with significant differences in transcript abundance, and their expression was modulated by abscisic acid and salicylic acid as well as abiotic factors such as salt, cold, and heat stresses.ConclusionsBoth monocotyledonous and dicotyledonous CBP family proteins can be divided into two distinct groups, which suggest the possibility of functional diversification. The high similarities of protein sequences, conserved domains and three-dimensional models among OsHATs and their homologs in Arabidopsis and maize suggested that OsHATs have multiple functions. OsHAC701, OsHAG702, and OsHAG704 were localized in both the nucleus and cytosol in transient expression analyses with Arabidopsis protoplasts. OsHATs were expressed constitutively in rice, and their expression was regulated by exogenous hormones and abiotic stresses, which suggested that OsHATs may play important roles in plant defense responses.

Highlights

  • Histone acetyltransferases (HATs) play an important role in eukaryotic transcription

  • CBP family of HATs Three CBP family proteins were identified in rice, namely OsHAC701, OsHAC703, and OsHAC704

  • Transcript levels of OsHAC701, OsHAC703, OsHAG702, OsHAG703, and OsHAM701 were significantly elevated in response to exogenous abscisic acid (ABA) application. These results indicated that OsHAC701, OsHAC703, OsHAG702, OsHAG703, and OsHAM701 may be involved in the ABA signaling pathway for response to environmental stresses during rice seedling growth

Read more

Summary

Introduction

Histone acetyltransferases (HATs) play an important role in eukaryotic transcription. Eight HATs identified in rice (OsHATs) can be organized into four families, namely the CBP (OsHAC701, OsHAC703, and OsHAC704), TAFII250 (OsHAF701), GNAT (OsHAG702, OsHAG703, and OsHAG704), and MYST (OsHAM701) families. Histone acetylation is catalyzed by five distinct HAT families, which comprise the p300/CREB (cAMPresponsive element-binding protein)-binding protein (CBP) family, the TATA-binding protein-associated factor (TAF)II250 family, the general control non-repressible 5related N-terminal acetyltransferase (GNAT) family, the MOZ, Ybf2/Sas, Sas, and Tip (MYST) family, and the nuclear hormone-related HATs family [4,5]. Bioinformatics analysis suggests that currently there are 12 putative HATs in Arabidopsis thaliana, and these proteins belong to the CBP family (HAC1/PCAT2, HAC2/PCAT1, HAC4/ PCAT3, HAC5/PCAT4, and HAC12), the TAFII250related family (HAF1 and HAF2/TAF1), the GNAT family (HAG1/GCN5, HAG2, and HAG3/ELP3) and the MYST family (HAM1/HAG4 and HAM2/HAG5) [5,6]. Histone acetylation by HATs is important for plant adaptation to environmental changes, such as light signaling [12,13,14,15], salt stress [16], cold stress [17,18,19], heat stress [20], abscisic acid (ABA) signaling [16,21,22], and other hormone signaling [23]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call