Abstract

The origin recognition complex (ORC) is an initiator protein for DNA replication, but also effects transcriptional silencing in Saccharomyces cerevisiae and heterochromatin function in Drosophila. It is not known, however, whether any of these functions of ORC is conserved in mammals. We report the identification of a novel protein, HBO1 (histone acetyltransferase binding to ORC), that interacts with human ORC1 protein, the largest subunit of ORC. HBO1 exists as part of a multisubunit complex that possesses histone H3 and H4 acetyltransferase activities. A fraction of the relatively abundant HBO1 protein associates with ORC1 in human cell extracts. HBO1 is a member of the MYST domain family that includes S. cerevisiae Sas2p, a protein involved in control of transcriptional silencing that also has been genetically linked to ORC function. Thus the interaction between ORC and a MYST domain acetyltransferase is widely conserved. We suggest roles for ORC-mediated acetylation of chromatin in control of both DNA replication and gene expression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.