Abstract
Linker histones play a fundamental role in shaping chromatin structure, but how their interaction with chromatin is regulated is not well understood. In this study, we used a combination of genetic and genomic approaches to explore the regulation of linker histone binding in the yeast, Saccharomyces cerevisiae We found that increased expression of Hho1, the yeast linker histone, resulted in a severe growth defect, despite only subtle changes in chromatin structure. Further, this growth defect was rescued by mutations that increase histone acetylation. Consistent with this, genome-wide analysis of linker histone occupancy revealed an inverse correlation with histone tail acetylation in both yeast and mouse embryonic stem cells. Collectively, these results suggest that histone acetylation negatively regulates linker histone binding in S. cerevisiae and other organisms and provide important insight into how chromatin structure is regulated and maintained to both facilitate and repress transcription.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.