Abstract
In cancer cells, enhancer hijacking mediated by chromosomal alterations and/or increased deposition of acetylated histone H3 lysine 27 (H3K27ac) can support oncogene expression. However, how the chromatin conformation of enhancer-promoter interactions is affected by these events is unclear. In the present study, by comparing chromatin structure and H3K27ac levels in normal and lymphoma B cells, we show that enhancer-promoter-interacting regions assume different conformations according to the local abundance of H3K27ac. Genetic or pharmacological depletion of H3K27ac decreases the frequency and the spreading of these interactions, altering oncogene expression. Moreover, enhancer hijacking mediated by chromosomal translocations influences the epigenetic status of the regions flanking the breakpoint, prompting the formation of distinct intrachromosomal interactions in the two homologous chromosomes. These interactions are accompanied by allele-specific gene expression changes. Overall, our work indicates that H3K27ac dynamics modulates interaction frequency between regulatory regions and can lead to allele-specific chromatin configurations to sustain oncogene expression.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.