Abstract

All four histones of the nucleosome core particle are subject to post-translational acetylation of selected lysine residues in their amino-terminal domains. The modification is ubiquitous and frequent. Steady-state levels of acetylation have been shown to vary from one part of the genome to another and to be maintained by a dynamic balance between the activities of two enzyme families, the histone acetyltransferases (HATs) and deacetylases (HDAs). The recent demonstration that some at least of these enzymes are homologous to, or identical with, known regulators of transcription, has renewed interest in the involvement of histone acetylation in transcriptional control. Acetylation might influence the initiation and/or elongation phases of transcription in a chromatin context, possibly by regulating the accessibility of nucleosomal DNA to transcription factors or the displacement of histones by the progressing transcription complex. But there is also evidence to suggest that acetylation might be involved in the longer-term regulation of transcription, acting as a marker by which states of genetic activity or inactivity are maintained from one cell generation to the next. This review outlines the evidence for such a role, using centric heterochromatin and the dosage-compensated male X chromosome in Drosophila as model systems, and suggests possible mechanisms by which it might operate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.