Abstract

During the last years, various groups of growth factors have been identified to influence spiral ganglion cell survival and neurite extension in the mammalian cochlea. To evaluate and compare the effects of different growth factors, a precise histomorphometrical analysis of neurite outgrowth patterns has to be applied. The here presented technique is compared to already published methods, that only approximately estimate the neurite length. A software has been developed to analyse digitalised scans of spiral ganglion cells and to measure the length of the neurites. Therefore, the neurites are being separated in any given number of straight lines. The totals of these lines can then be added like a polygon. This polygon method was compared to a semi-quantitative procedure in which the neurite length was determined by concentric circles that were crossed by the neurites in a certain distance. The accuracy of both methods was analysed. Both methods were performed in 20 specimen of neonatal rat spiral ganglion cells after in vitro stimulation with neurotrophic factors. The semi-quantitative method has shown to involve a systematic error between +/- 10 to 15 %. The polygon method, on the contrary, has a systematic error of around +/- 1 %, which admits much more accurate measurement of spiral ganglion neurite outgrowth. With the described polygon method, spiral ganglion neurite growth patterns in cell culture studies can be characterised more precisely and, thus, helps to better differentiate the action domain of neurotrophic factors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.