Abstract
An experiment was conducted to determine the effect of dietary phytic acid (PA) and phytase supplementation on small intestinal histomorphology and Na-dependent glucose transporter 1 (SGLT1) gene expression in piglets. Twenty-four piglets with an average initial BW of 7.60 ± 0.73 kg were randomly assigned to 3 experimental diets, to give 8 piglets per diet. The diets were a casein-cornstarch-based diet that was supplemented with 0 or 2% PA, or 2% PA (as Na phytate) plus an Escherichia coli-derived phytase at 500 phytase units/kg. The basal diet was formulated to meet the 1998 NRC energy, digestible AA, mineral, and vitamin requirements for piglets. After 10 d of feeding, the piglets were killed to determine small intestinal histomorphology and small intestinal SGLT1 gene expression. Phytic acid supplementation did not affect (P > 0.1) villus height (VH) and the VH-to-crypt depth (CD) ratio, but did decrease (P < 0.05) CD in the jejunum. Phytase supplementation did not affect (P > 0.1) VH, CD, and the VH-to-CD ratio. Phytic acid supplementation reduced SGLT1 gene expression in the duodenum, jejunum, and ileum by 1.1-, 5.4-, and 2.4-fold, respectively. Phytase supplementation increased SGLT1 gene expression in the jejunum by 2.6-fold, but reduced SGLT1 gene expression in the duodenum and ileum by 2.0- and 4.0-fold, respectively. In conclusion, PA reduced CD in the jejunum and SGLT1 gene expression in the duodenum, jejunum, and ileum, whereas phytase supplementation increased the expression of SGLT1 in the jejunum. The reduced SGLT1 gene expression by PA implies that PA reduces nutrient utilization in pigs partly through reduced expression of SGLT1, which is involved in glucose and Na absorption. The increased expression of SGLT1 in the jejunum by phytase supplementation implies that phytase alleviated the negative effects of PA partly through increased expression of SGLT1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.