Abstract

Simple SummaryCommon toads, including the natterjack toad (Epidalea calamita), have been used since ancient times for remedies, and thus constitute excellent biological material for pharmacological and natural product research. After a previous analysis of the historical-folk therapeutic use of amphibians in Spain, a histological study was carried out to provide a complementary ethnopharmacological view through the analysis of the integumentary heterogeneity of the serous (venom) and mucous glands from two adult specimens. Plastic-embedded semi-thin sections showed that serous/venom glands are cytologically homogeneous in spite of their genetic and biochemical complexity, leading to a cocktail that remains stored until extrusion. On the contrary, mucous glands, working continuously, show a more complex cytological variation and regional heterogeneity, which suggests an adaptive variability, leading to an invisible topographic map of skin toxicity. Natterjack toad-based folk remedies are usually extracted from the whole animal as a therapeutic unit in ethnoveterinary practice. However, a new ethnopharmacological vision could emerge from the study of tegumentary regional variation.Common toads have been used since ancient times for remedies and thus constitute excellent biological material for pharmacological and natural product research. According to the results of a previous analysis of the therapeutic use of amphibians in Spain, we decided to carry out a histological study that provides a complementary view of their ethnopharmacology, through the natterjack toad (Epidalea calamita). This species possesses a characteristic integument, where the parotoid glands stand out, and it has been used in different ethnoveterinary and ethnomedical practices. This histological study of their glandular variability allow us to understand the stages through which the animal synthesises and stores a heterogeneous glandular content according to the areas of the body and the functional moment of the glands. To study tegumentary cytology, a high-resolution, plastic embedding, semi-thin (1 micron) section method was applied. Up to 20 skin patches sampled from the dorsal and ventral sides were processed from the two adult specimens collected, which were roadkill. Serous/venom glands display a genetic and biochemical complexity, leading to a cocktail that remains stored (and perhaps changes over time) until extrusion, but mucous glands, working continuously to produce a surface protection layer, also produce a set of active protein (and other) substances that dissolve into mucous material, making a biologically active covering. This study provides a better understanding of the use of traditional remedies in ethnoveterinary medicine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call