Abstract

Abstract Introduction With the increase of end stage lung diseases and the great problems facing lung transplantation tissue engineering become a promising solution. The first step in lung engineering is to obtain a 3D Extracellular matrix lung scaffold via decellularization. Decellularization aims to remove cells from tissue ultrastructure while preserving the mechanical and biological properties of the tissue. Intact ECM provides critical cues for differentiation and migration of cells that are seeded onto the organ scaffold. Objectives This study aimed to obtain an intact and well-preserved ECM lung scaffold by decellularization of rat lungs. Methods Decellularization of lungs of ten Wistar rats was achieved by perfusing detergents through the pulmonary artery. The resultant scaffolds were fixed and analyzed histologically. Results It was found that the decellularization process effectively removed the cellular and nuclear material while retaining native the 3D ECM of lung tissue. The architecture of the collagen and elastic fibers networks were preserved as comparable to the native lungs. Furthermore, the basement membranes of the bronchiolar and interalveolar septa were intact. Conclusions This methodology is expected to allow decellularization of human lung tissues and permits future scientific exploration in tissue engineering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call