Abstract

There is a strong impetus for the development of alternative treatments for bone disease that avoid the complications associated with autografts and allografts. To address this, we previously developed porous apatite-fiber scaffolds (AFSs) which have three-dimensional interconnected pores, and constructed tissue-engineered bone by culturing rat bone marrow cells (RBMCs) using AFSs in a radial-flow bioreactor (RFB). To generate additional baseline data for the development of tissue-engineered bone constructed for clinical application using a RFB, we cultured RBMCs using AFSs under static conditions (hereafter, RBMC AFS culture), and monitored RBMC growth and differentiation characteristics in vitro, and two weeks after subcutaneous inoculation into recipient rats. RBMCs were seeded to AFSs and growth, differentiation and calcification were monitored in vitro and in vivo by histological evaluation using hematoxylin eosin, alkaline phosphatase and alizarin red S stains. RBMCs in/on AFSs proliferated and differentiated normally in vitro and in vivo, and calcification was evident two weeks after subcutaneous AFS culture implantation. Histological assays revealed that AFSs and RBMC AFS cultures were biocompatible, and did not induce inflammation or immunological rejection in vivo. These findings suggest that AFSs are a conducive microenvironment for bone regeneration and are well tolerated in vivo. The results provide valuable baseline data for the design of implant studies using tissue-engineered bone constructed by RFB.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.