Abstract
Accurate diagnosis of high-risk benign breast lesions is crucial in patient management since they are associated with an increased risk of invasive breast cancer development. Since it is not yet possible to identify the occult cancer patients without surgery, this limitation leads to retrospectively unnecessary surgeries. In this paper, we present a computational pathology pipeline for histological diagnosis of high-risk benign breast lesions from whole slide images (WSIs). Our pipeline includes WSI stain color normalization, ductal regions of interest (ROIs) segmentation, and cytological and architectural feature extraction to classify ductal ROIs into triaged high-risk benign lesions. We curated 93 WSIs of breast tissues containing high-risk benign lesions based on pathology reports and collected ground truth annotations from three different pathologists for the ductal ROIs segmented by our pipeline. Our method has comparable performance to a pool of expert pathologists.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.