Abstract

BackgroundAluminum (Al) and indium (In) have been largely used in medicine, pharmacy, dentistry, manufacturing, engineering, clothing as well as food processing and packaging. Our previous study showed that In was accumulated as electron-dense materials in lysosomes of Sertoli and Leydig testicular cells and the liver ones, when administered to male rats as soluble form. For this reason, we have undertaken to confirm whether Al have the same behavior as In and to enlarge this behavior to other organs of the male reproductive system: epididymis and seminal vesicle. MethodsExperiments were performed on 24 adult male Wistar rat weighing approximately 250 g. Animals were divided to 3 groups, received Al, In or saline solution as 7 chronic intraperitoneal injections over a period of two weeks and were sacrificed 24 h after the last injection. For ultrastructure study we used The Transmission Electron Microscopy (TEM). ResultsThe TEM showed the presence of electron-dense granules in lysosomes of testicular cells (Sertoli and Leydig cells), and in the principal epididymal and seminal vesicle cells of Al and In treated rats. Impairments were observed in the endoplasmic reticulum and mitochondria and many vacuoles were identified in the cells cytoplasm. Our results concluded that lysosomes of Leydig and Sertoli cells, principal epididymis, and seminal vesicle cells as well as liver cells, played a central role in the extraction and concentration of Al and In under insoluble form after their introduction into the body as a soluble route. This mechanism intended to protect the organism against exogenous toxic and non-recognized mineral elements after their intrusion into the body. ConclusionIt looks important to proceed with the study of Al and In impact on the endocrine and exocrine functions of the male rat reproductive system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.