Abstract

To understand how humans adapt to the space environment, many experiments can be conducted on astronauts as they work aboard the Space Shuttle or the International Space Station (ISS). We also need animal experiments that can apply to human models and help prevent or solve the health issues we face in space travel. The Japanese medaka (Oryzias latipes) is a suitable model fish for studying space adaptation as evidenced by adults of the species having mated successfully in space during 15 days of flight during the second International Microgravity Laboratory mission in 1994. The eggs laid by the fish developed normally and hatched as juveniles in space. In 2012, another space experiment (“Medaka Osteoclast”) was conducted. Six-week-old male and female Japanese medaka (Cab strain osteoblast transgenic fish) were maintained in the Aquatic Habitat system for two months in the ISS. Fish of the same strain and age were used as the ground controls. Six fish were fixed with paraformaldehyde or kept in RNA stabilization reagent (n = 4) and dissected for tissue sampling after being returned to the ground, so that several principal investigators working on the project could share samples. Histology indicated no significant changes except in the ovary. However, the RNA-seq analysis of 5345 genes from six tissues revealed highly tissue-specific space responsiveness after a two-month stay in the ISS. Similar responsiveness was observed among the brain and eye, ovary and testis, and the liver and intestine. Among these six tissues, the intestine showed the highest space response with 10 genes categorized as oxidation–reduction processes (gene ontogeny term GO:0055114), and the expression levels of choriogenin precursor genes were suppressed in the ovary. Eleven genes including klf9, klf13, odc1, hsp70 and hif3a were upregulated in more than four of the tissues examined, thus suggesting common immunoregulatory and stress responses during space adaptation.

Highlights

  • Space radiation and microgravity are major environmental stressors to humans in space, and the physiological changes induced by those stressors are the main health concerns during space adaptation [1]

  • Using hematoxylin and eosin (H&E) staining of the liver, cellular abnormalities such as vacuolization, fibrosis, the appearance of spindle-like cells with pyknotic nuclei, and malignant transformation were not observed in either group (n = 5 each)

  • We found the depletion of previtellogenic stage oocytes in all spaceflight group (SF) samples (n = 3), but not in the ground control (GC) samples (n = 2) (Fig 1 and S3 Fig)

Read more

Summary

Introduction

Space radiation and microgravity are major environmental stressors to humans in space, and the physiological changes induced by those stressors are the main health concerns during space adaptation [1]. The expression levels of genes encoding proteins involved in various cellular defense mechanisms including antioxidation showed increases [18,19,20,21,22]. Most of these studies concerned alterations in gene expression levels after two weeks of adaptation or less, and no inducing factors could be identified

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call