Abstract

In contrast to model species, the self-incompatibility reaction in citrus has been poorly studied. It is assumed to be gametophytically determined and genetically controlled by the S-locus, which in other species encodes for glycoproteins (S-RNases) showing ribonuclease activity. To investigate pollen-pistil interaction, the pollen tube growth of two clementine varieties, 'Comune' (self-incompatible) and 'Monreal' (a 'Comune' self-compatible mutation) was analysed by histological assays in self- and cross-pollination conditions. Cross-pollination assays demonstrated that the mutation leading to self-compatibility in 'Monreal' occurred in the stylar tissues. Similar rates of pollen germination were observed in both genotypes. However, 'Comune' pollen tubes showed altered morphology and arrested growth in the upper style while in 'Monreal' they grew straight toward the ovary. Moreover, to identify genes putatively involved in pollen-pistil interaction and self-incompatibility, research based on the complementary DNA-amplified fragment length polymorphism technique was carried out to compare the transcript profiles of unpollinated and self-pollinated styles and stigmas of the two cultivars. This analysis identified 96 unigenes such as receptor-like kinases, stress-induced genes, transcripts involved in the phenylpropanoid pathway, transcription factors and genes related to calcium and hormone signalling. Surprisingly, a high percentage of active long terminal repeat (LTR) and non-LTR retrotransposons were identified among the unigenes, indicating their activation in response to pollination and their possible role in the regulation of self-incompatibility genes. The quantitative reverse trascription-polymerase chain reaction analysis of selected gene tags showed transcriptional differences between the two genotypes during pollen germination and pollen tube elongation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.