Abstract

Fluctuations in olfactory sensitivity are widely known to occur during pregnancy and may be responsible for hyperemesis gravidarum. These changes are thought to be caused by structural and functional alterations in neurons in response to marked changes of the hormonal milieu. In this study, we examined changes in neurons in the olfactory cortex during pregnancy and after delivery in rats. Dendritic spine densities were measured in the piriform cortex (PIR) and posterolateral cortical amygdala (COApl), which are involved in olfaction. The results showed increased numbers of dendritic spines in the PIR in mid-pregnancy and in the COApl during early and late pregnancy, but not in the motor area of the cerebral cortex, indicating a correlation with changes in olfactory sensitivity during pregnancy. Immunohistochemical analysis of expression of ovarian hormone receptors in these brain regions revealed a decrease in the number of estrogen receptor α-positive cells during pregnancy in the PIR and during pregnancy and the postpartum period in the COApl. Regarding pregnancy-related peptide hormones, oxytocin receptors were expressed in the PIR and COApl, while prolactin receptors were not found in these regions. Accordingly, oxytocin-containing neurites were distributed in both regions. These results suggest that the balance of these hormonal signals has an effect on olfactory sensitivity in pregnant females.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call