Abstract
The power for appreciating complex cellular interactions during embryonic development using green fluorescent protein (GFP) as a visual histological marker has not been applied to adult tissues due to loss of GFP signal during paraffin embedding and a high autofluorescent background, particularly in section of bone and bone marrow. Here we demonstrate that the GFP signal is well preserved in frozen sections of adult decalcified bone. Using a tape-transfer system that preserves histological relationships, GFP expression can be related to standard histological stains used in bone biology research. The choice of a dual-filter cube and a strong GFP signal makes it possible to readily distinguish at least four different GFP colors that are distinctly different from the autofluorescent background. An additional advantage of the frozen sections is better preservation of immunological epitopes that allow colocalization of an immunostained section with an endogenous GFP and a strong lacZ signal emanating from a beta-gal marker gene. We present an approach for recording multiple images from the same histological section that allows colocalization of a GFP signal with subsequent stains and procedures that destroy GFP. Examples that illustrate the flexibility for dual imaging of various fluorescent signals are described in this study. The same imaging approach can serve as a vehicle for archiving, retrieving, and sharing histological images among research groups.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.