Abstract

Muscle development during embryonic and early post-hatch growth is primarily through hyperplastic growth and accumulation of nuclei through satellite cell contribution. Post-hatch, muscle development transitions from hyperplasia to hypertrophic growth of muscle fibers. Commercial selection for breast yield traditionally occurs at ages targeting hypertrophic rather than hyperplastic growth. This has resulted in the production of giant fibers and concomitant challenges with regard to muscle myopathies. The current study investigates the impact of selection during the period of hyperplastic growth. It is hypothesized that selection for percentage breast yield during hyperplasia will result in an increased number of muscle cells at hatch and potentially impact muscle fiber characteristics at processing. This study characterizes the breast muscle histology of three broiler lines at various ages in the growth period. The lines include a random bred control (RAN) as well as lines which have been selected from RAN for high (HBY4) and low (LBY4) percentage 4-day breast yield. Post-rigor pectoralis major samples from six males of each line and age were collected and stored in formalin. The sample ages included embryonic day 18 (E18), post-hatch day 4 (d4), and day 56 (d56). The samples were processed using a Leica tissue processor, embedded in paraffin wax, sectioned, and placed on slides. Slides were stained using hematoxylin and eosin. E18 and d4 post-hatch analysis showed advanced muscle fiber formation for HBY4 and immature muscle development for LBY4 as compared to RAN. Post-hatch d56 samples were analyzed for fiber number, fiber diameter, endomysium, and perimysium spacing. Line HBY4 had the largest muscle fiber diameter (54.2 ± 0.96 μm) when compared to LBY4 (45.4 ± 0.96 μm). There was no line difference in endomysium spacing while perimysium spacing was higher for HBY4 males. Selection for percentage 4-day breast yield has impacted the rate and extent of muscle fiber formation in both the LBY4 and HBY4 lines with no negative impact on fiber spacing. The shift in processing age to later ages has exposed issues associated with muscle fiber viability. Selection during the period of muscle hyperplasia may impact growth rate; however, the potential benefits of additional satellite cells are still unclear.

Highlights

  • Broiler production in the United States has increased drastically over the past 50 years as demand for poultry meat by consumers has risen

  • Lines appeared to be in different stages of development with the HBY4 line showing advanced muscle fiber development by 1 to 2 days and the LBY4 line lagging behind a day when compared to the random bred control (RAN) line

  • Of the six samples taken from the HBY4 line, five of the six showed advanced muscle fiber formation when compared to the RAN while only two of the six from the LBY4 line appeared to be lagging behind in development

Read more

Summary

Introduction

Broiler production in the United States has increased drastically over the past 50 years as demand for poultry meat by consumers has risen. Broiler genetic progress has resulted in a bird that is faster growing, high yielding, and more efficient than the broiler from the 1950s This has allowed for the poultry industry to meet the growing demand in a cost-effective way (Barbut et al, 2008). Genetic progress and changes in management and environment have resulted in concomitant challenges in the areas of meat quality, with woody breast and white striping being two myopathies that have developed in recent years (Barbut, 1996, 1997, 1998; Anthony, 1998). Novel selection methods are being evaluated for their effectiveness in controlling the development of both woody breast and white striping in the industry to avoid further economic losses from the muscle myopathies. Advancements in methods of characterization may help increase the heritability of this trait by focusing on quantitative measures instead of subjective scoring systems

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call