Abstract
Cardiac treatments such as transmyocardial laser revascularization and radiofrequency ablation cause thermal injury. We sought to provide quantitative histologic methods of assessing such injury by using the inherent birefringence of cardiac muscle and collagen; specifically, to exploit the connection between thermal injury and the loss of birefringence. We quantified tissue birefringence changes in vitro for temperatures up to 130 degrees C. This information was used to assess thermal injury associated with myocardial channels made in vitro. We then measured in vivo cardiac injury 30 minutes and 3 days after radiofrequency exposure. Birefringence decreased above 60 degrees C for muscle and above 70 degrees C for collagen. Temperatures above 80 degrees C were associated with collagen fiber straightening and above 95 degrees C with little muscle birefringence. Injury adjacent to laser channels was greatest parallel to cell orientation. In vivo, muscle with reduced birefringence was surrounded by cells exhibiting focal birefringence increases (contraction bands). Early injury assessment marked by birefringence changes corresponded to lesion size at 3 days. Polarized light revealed histologic temperature signatures corresponding to irreversible muscle injury and collagen denaturation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.