Abstract

The incorporation of automated computational tools has a great amount of potential to positively influence the field of pathology. However, pathologists and regulatory agencies are reluctant to trust the output of complex models such as Convolutional Neural Networks (CNNs) due to their usual implementation as black-box tools. Increasing the interpretability of quantitative analyses is a critical line of research in order to increase the adoption of modern Machine Learning (ML) pipelines in clinical environments. Towards that goal, we present HistoLens, a Graphical User Interface (GUI) designed to facilitate quantitative assessments of datasets of annotated histological compartments. Additionally, we introduce the use of hand-engineered feature visualizations to highlight regions within each structure that contribute to particular feature values. These feature visualizations can then be paired with feature hierarchy determinations in order to view which regions within an image are significant to a particular sub-group within the dataset. As a use case, we analyzed a dataset of old and young mouse kidney sections with glomeruli annotated. We highlight some of the functional components within HistoLens that allow non-computational experts to efficiently navigate a new dataset as well as allowing for easier transition to downstream computational analyses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.