Abstract

We present a novel approach to statistically characterize histograms of model-relative image regions. A multiscale model is used as an aperture to define image regions at multiple scales. We use this image description to define an appearance model for deformable model segmentation. Appearance models measure the likelihood of an object given a target image. To determine this likelihood we compute pixel intensity histograms of local model-relative image regions from a 3D image volume near the object boundary. We use a Gaussian model to statistically characterize the variation of non-parametric histograms mapped to Euclidean space using the Earth Mover’s distance.The new method is illustrated and evaluated in a deformable model segmentation study on CT images of the human bladder, prostate, and rectum. Results show improvement over a previous profile based appearance model, out-performance of statistically modeled histograms over simple histogram measurements, and advantages of regional histograms at a fixed local scale over a fixed global scale.KeywordsSegmentation ResultImage RegionObject BoundaryGlobal RegionAppearance ModelThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.