Abstract

Features extraction is one of the most important steps in handwriting recognition systems. In this paper, we propose a novel features extraction method, which is adapted to the complex nature of Arabic handwriting. The proposed feature called histogram of marked background (HMB) is not considering only ink pixels in a text image, but also uses the background of the image. Each background pixel in the text image was marked according to the repartition of ink pixels in its neighborhood. Feature vectors are extracted by computing histograms from the marked images. Hidden Markov models (HMMs) with Hidden Markov model toolkit (HTK) were used in the recognition process. The experiments were performed on two datasets: IBN SINA database of historical Arabic documents and Isolated Farsi Handwritten Character Database (IFHCDB). The proposed feature in this study produced efficient and promising results for Arabic handwriting recognition, for both isolated characters and for historical documents.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.