Abstract
An essential aspect of texture analysis is the extraction of features that describe the distribution of values in local, spatial regions. We present a localized histogram layer for artificial neural networks. Instead of computing global histograms as done previously, the proposed histogram layer directly computes the local, spatial distribution of features for texture analysis and parameters for the layer are estimated during backpropagation. We compare our method with state-of-the-art texture encoding methods such as the Deep Encoding Network Pooling, Deep Texture Encoding Network, Fisher Vector convolutional neural network, and Multi-level Texture Encoding and Representation on three material/texture datasets: (1) the Describable Texture Dataset; (2) an extension of the ground terrain in outdoor scenes; (3) and a subset of the Materials in Context dataset. Results indicate that the inclusion of the proposed histogram layer improves performance. The source code for the histogram layer is publicly available: https://github.com/GatorSense/Histogram_Layer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.