Abstract

This study examines the anatomical development of the visual system of Atlantic bluefin tuna, Thunnus thynnus, during the first 15 days of life at histological level, with emphasis in the immunohistochemical characterization of different cell types. As an altricial fish species, the retina was not developed at hatching. The appearance of eye pigmentation and the transformation of the retina from an undifferentiated neuroblastic layer into a laminated structure occurred during the first two days of life. At 16 days after hatching (DAH), the ganglion cells were arranged in a single row in the central region of the retina and the outer segments of the photoreceptors were morphologically developed. Furthermore, at this age, all the retinal cell types were immunohistochemically characterized. The presence of ganglion cell axons was confirmed with the TUJ1 antibody and the existence of functional synapses in the plexiform layers with antibodies against SV2. Cone opsins were immunostained with antibodies against visinin and CERN-922 immunoreactive rods were also identified. Different subpopulations of amacrine cells were immunostained with antibodies against αTH and PV. Highly GS-immunoreactive Müller cells were also detected at this age. These observations suggested that the T. thynnus retina was fully functional at the end of the second week of life. Basic studies on early morphology of the visual system and larval behavior are necessary to support applied research on larval rearing. Furthermore, they may have implications for understanding larval ecology in the wild.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call