Abstract

Rice embryo development was examined, histochemically and ultrastructurally, from the time of fertilization to embryo maturity. At the time of fertilization, the megagametophyte consists of an antipodal mass of 10–15 cells, parietally positioned along the placental side of the central cell, and, at the micropylar end, two partly fused polar nuclei and the egg apparatus. Hydrolysis of adjacent nucellar tissue suggests the secretion of hydrolytic enzymes by the antipodal mass. The antipodal cells stain intensely for RNA and protein, indicating that they are metabolically active. The egg, supported by two overarching synergids, occupies a small, wall ingrowth-lined pocket of the central cell that quickly fills with cellular endosperm after fertilization. The endosperm cells, initially supplied with nutrients from wall ingrowth-derived vesicles, are digested and utilized by the embryo as a nutritive source. The developing embryo is also supplied with assimilates via the nucellus at the base of the embryo until about 8 days after fertilization. After 8 days, the embryo is no longer connected to the nucellus, and the nucellar cells at the base of the embryo are crushed. The zygote is not structurally polarized and contains a central nucleus, amyloplasts, lipid bodies, dictyosomes and extensive dilated ER. The first division of the zygote is transverse and unequal and occurs about 4 hours after fertilization. Embryo development is rapid, and within 24 hr, the embryo consists of 5–8 cells. Organ development begins with scutellum emergence in the 3-day-old embryo. The shoot apex organizes and the coleoptile develops from scutellum tissue at 4 days postfertilization, the epiblast emerges at 5 days, and the vascular bundle and root apex differentiate by 6 days after fertilization. Starch begins to accumulate in the basal cells of the 3-day-old embryo and deposition proceeds acropetally over the next 9–10 days. Lipid accumulation begins in the basal scutellum in the 6-day-old embryo and also proceeds acropetally. Storage protein synthesis is first detected in 6-day-old embryos and accumulation again proceeds acropetally, reaching the apex of the scutellum of the 25-day-old embryo. The ultrastructure of the 24-hr-old embryo is distinctive. The cells are characterized by numerous vesicles, heterochromatin and extensive nuclear evaginations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call