Abstract

Vinyl acetate (VA) is widely used within the chemical industry, in the manufacture of polyvinyl alcohol, and as polyvinyl acetate emulsions in latex paints, adhesives, paper and paper board coatings. Chronic oral exposure of rodents to high concentrations of VA induces tumours within the oral cavity. Carboxylesterase-dependent hydrolysis of VA is thought to be critical in the development of nasal tumours following inhalation exposure of animals to VA. Therefore, carboxylesterase activity was determined histochemically in the oral cavities of male F344 rats and BDF mice in order to explore the potential role of carboxylesterase-dependent hydrolysis of VA in the development of oral tumours. Following fixation in 10% neutral buffered formalin heads were decalcified in neutral saturated EDTA, embedded in resin, sectioned at six levels (three each for the upper and lower jaws), and carboxylesterase activity revealed in the tissue using α-naphthyl butyrate as substrate. The localisation of carboxylesterase activity in freshly dissected rat oral tissue was compared to that of the resin sections and found to be identical, thus validating the decalcification process. A similar pattern of carboxylesterase activity was observed for the two species. Staining was low in areas surrounding the teeth, and medium/high in the buccal mucosa, the central/posterior upper palate and those regions of the lower jaw not proximal to the teeth. In general the intensity of staining was greater in sections from the rat compared to those from the mouse. By comparison, carboxylesterase activity was considerably higher in mouse nasal olfactory epithelium than in any of the oral tissues. Thus the mucosa of the oral cavity has the potential to hydrolyse VA to its metabolites, acetic acid and acetaldehyde, and the presence of carboxylesterases at this site is consistent with, and may be an important determining factor in, the development of oral cavity tumours following exposure to VA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call