Abstract
Plant growth-promoting rhizobacteria Bacillus pumilus strain INR-7 effectively induced downy mildew resistance in pearl millet. The histo-chemical analysis of B. pumilus INR-7 mediated systemic resistance showed that induced resistance is associated with the expression of hypersensitive response (HR), enhanced lignification, callose deposition, and hydrogen peroxide in addition to the increased expression of the defense enzymes β-1,3-glucanase, chitinase, phenylalanine ammonia lyase (PAL), peroxidase (POX), and polyphenol oxidase (PPO). There was rapid expression of HR in the resistant pearl millet as well as the susceptible seedlings induced by treatment with INR-7 after pathogen infection when compared to the susceptible seedlings, which expressed HR at later hours. Examination of inoculated pearl millet tissues by microscopy showed that lignin, callose, and hydrogen peroxide accumulated earlier and to higher levels in resistant and induced resistant seedlings. Accumulation of various defense enzymes was an immediate response to Sclerospora graminicola infection and preceded the development of induced resistance elicited by strain INR-7. Tissue print analysis showed that defense enzymes were found to be localized in the vascular bundles and revealed the visual difference in the expression pattern of β-1,3-glucanase, chitinase, PAL, POX, and PPO whose intensity varied among resistant, INR-7 treated, and susceptible pearl millet seedlings. This study clearly demonstrated that the differences between the responses, susceptible, INR-7 treated or resistant pearl millet seedlings recorded differences in the speed, intensity, and pattern of different histo-chemical responses to S. graminicola infection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.