Abstract
1. The histochemical characteristics of gastrocnemius muscle were investigated in 6-week-old cold-acclimated (5 weeks, 4 degrees C) and glucagon-treated (5 weeks, 25 degrees C, 103 nmol/kg I.P. twice daily) muscovy ducklings, two groups able to develop non-shivering thermogenesis in vivo. A comparison was made with thermoneutral controls (25 degrees C) of the same age. All animals were fed ad libitum. Fibre type, fibre area and capillary supply have been studied. Further, a quantitative histochemical method for mitochondrial Mg(2+)-ATPase activity was developed to characterize the mitochondrial coupling state in situ. 2. White gastrocnemius was composed of fast glycolytic (FG) and fast oxidative glycolytic (FOG) fibres, while red gastrocnemius contained FOG and slow oxidative (SO) fibres. In white gastrocnemius, the proportion of FG fibres was higher in glucagon-treated than in control or cold-acclimated ducklings. In red gastrocnemius, the proportion of SO fibres was higher in both cold-acclimated and glucagon-treated ducklings than in controls. The area of all fibres was generally lower in glucagon-treated than in other ducklings. 3. The capillary density was higher in both red and white components of the gastrocnemius muscle in cold-acclimated and glucagon-treated than in control ducklings, as a result of an increased number of capillaries around each fibre. 4. In all fibres, except the FG type in cold-acclimated ducklings, the staining intensity of the Mg(2+)-ATPase reaction was higher in cold-acclimated and glucagon-treated than in control ducklings whereas the staining intensity with maximal decoupling of oxidative phosphorylation by dinitrophenol was unchanged. This indicated a more loose-coupled state of mitochondria in situ in all fibres of cold-acclimated ducklings, and in FOG fibres of white gastrocnemius and SO fibres of red gastrocnemius in glucagon-treated ducklings. 5. These results indicated a higher oxidative metabolism of skeletal muscle in both cold-acclimated and glucagon-treated than in control ducklings, and for most of the parameters studied, a similarity between cold acclimation and glucagon treatment. Because of the higher loose-coupled state of muscle mitochondria in cold-acclimated and glucagon-treated than in control ducklings, the higher oxidative capacity of skeletal muscle in these ducklings could be used for heat production rather than ATP synthesis and account for muscular non-shivering thermogenesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.