Abstract
The distribution of acetylcholinesterase (AChE)-positive nerve fibers and cells, as well as the effects of acetylcholine (ACh) on ureteral smooth muscle and small resistance arteries were investigated in the equine ureter by means of histochemical, classic organ baths and myograph techniques. AChE-positive nerve fibers were widely distributed throughout the ureteral wall forming muscular, subepithelial and perivascular nerve plexuses, whose density was highest at the intravesical ureter. AChE-positive nerve cells were also identified grouped as adventitial or intramural ganglia. ACh increased concentration-dependently both the frequency of phasic contractile activity and basal tone of the isolated intravesical ureter, the pD2 values being 6.31 +/- 0.18 and 6.59 +/- 0.13, respectively. The ACh-induced motor effects in ureteral smooth muscle were blocked by atropine, giving pIC50 values of 8.58 +/- 0.08 and 9.68 +/- 0.05 for phasic activity and tone, respectively. Hexamethonium only inhibited ACh-evoked contractile activity at the highest concentration used. ACh elicited a potent endothelium-dependent relaxation of equine ureteral resistance arteries precontracted with 40 mM K-PSS, the pD2 value being 7.94 +/- 0.07. This relaxant response was abolished in the presence of the nitric oxide (NO) inhibitor, NG-nitro-L-arginine (L-NNA), the blockade being reversed by subsequent incubation with the NO exogenous substrate, L-arginine. The ACh-induced relaxation was competitively antagonized by atropine (pA2 = 10.05 +/- 0.18). The present results suggest the existence of a rich cholinergic innervation in the equine ureter which controls both ureteral smooth muscle and resistance arteries motor activity through the muscarinic effects of ACh. In addition, the ACh relaxant response in the ureteral resistance arteries seems to be mediated by NO.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.