Abstract
By means of autoradiographic and immunohistochemical methods it was demonstrated that astrocytes in explant and primary cultures of rat neocortex, hippocampus, preoptic area and spinal cord express estrogen α- and β-receptors. Immunoreactivity was mainly distributed over the soma, the nuclei being more intensely stained. Combined autoradiographic and immunohistochemical studies as well as double-immunostaining revealed a colocalization of estrogen α- and β-receptors on many astrocytes. There was also a coexistence of estrogen receptors and cholinergic muscarinic and nicotinic sites. Electrophysiological investigations have shown that 17β-estradiol induced hyperpolarizations on the majority of astrocytes in explant cultures of hippocampus and spinal cord, providing evidence for the existence of functional estrogen receptors on these cells. Furthermore, on the same astrocytes, 17β-estradiol, muscarine and nicotine caused hyperpolarizations, suggesting a coexistence of receptors for estrogen and the cholinergic agonists on glial cells. The presence of glial estrogen receptors and their colocalization with cholinergic receptors is discussed with respect to the effects of these neurotransmitters/neuromodulators in development and maturation of the central nervous system, as well as to neurodegenerative events such as Alzheimer’s disease.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Developmental Neuroscience
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.