Abstract
His-aromatic complexes, with the His located above the aromatic plane, are stabilized by π-π, δ(+)-π and/or cation-π interactions according to whether the His is neutral or protonated and the partners are in stacked or T-shape conformations. Here we attempt to probe the relative strength of these interactions as a function of the geometry and protonation state, in gas phase, in water and protein-like environments (acetone, THF and CCl4), by means of quantum chemistry calculations performed up to second order of the Møller-Plesset pertubation theory. Two sets of conformations are considered for that purpose. The first set contains 89 interactions between His and Phe, Tyr, Trp, or Ade, observed in X-ray structures of proteins and protein-ligand complexes. The second set contains model structures obtained by moving an imidazolium/imidazole moiety above a benzene ring or an adenine moiety. We found that the protonated complexes are much more stable than the neutral ones in gas phase. This higher stability is due to the electrostatic contributions, the electron correlation contributions being equally important in the two forms. Thus, π-π and δ(+)-π interactions present essentially favorable electron correlation energy terms, whereas cation-π interactions feature in addition favorable electrostatic energies. The protonated complexes remain more stable than the neutral ones in protein-like environments, but the difference is drastically reduced. Furthermore, the T-shape conformation is undoubtedly more favorable than the stacked one in gas phase. This advantage decreases in the solvents, and the stacked conformation becomes even slightly more favorable in water. The frequent occurrence of His-aromatic interactions in catalytic sites, at protein-DNA or protein-ligand interfaces and in 3D domain swapping proteins emphasize their importance in biological processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.