Abstract

Histidine–zinc interactions are believed to play a key role in the self‐healing behavior of mussel byssal threads due to their reversible character. Taking this as inspiration, the authors synthesize here histidine‐rich copolymers, as well as model histidine compounds and characterize them using isothermal titration calorimetry (ITC). With this approach, the influence of two different zinc(II) salts and the role in the complex formation of the amine function of the imidazole ring are investigated in detail. The extracted metal–ligand ratios are utilized to design novel self‐healing metallopolymers. For this purpose, n‐lauryl methacrylate is copolymerized with the histidine monomer via reversible addition‐fragmentation chain transfer polymerization. The copolymers are crosslinked using different zinc salts, and the resulting coatings are characterized with Raman spectroscopy to investigate the metal coordination behavior and with scratch healing tests to investigate the self‐healing capacity. Finally, the self‐healing behavior of the different materials is correlated with the metal–ligand binding affinity measured by ITC. image

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.