Abstract
BackgroundThe ArsRS two-component system is the master regulator of acid adaptation in the human gastric pathogen Helicobacter pylori. Low pH is supposed to trigger the autophosphorylation of the histidine kinase ArsS and the subsequent transfer of the phosphoryl group to its cognate response regulator ArsR which then acts as an activator or repressor of pH-responsive genes. Orthologs of the ArsRS two-component system are also present in H. pylori's close relatives H. hepaticus, Campylobacter jejuni and Wolinella succinogenes which are non-gastric colonizers.Methodology/Principal FindingsIn order to investigate the mechanism of acid perception by ArsS, derivatives of H. pylori 26695 expressing ArsS proteins with substitutions of the histidine residues present in its periplasmic input domain were constructed. Analysis of pH-responsive transcription of selected ArsRS target genes in these mutants revealed that H94 is relevant for pH sensing, however, our data indicate that protonatable amino acids other than histidine contribute substantially to acid perception by ArsS. By the construction and analysis of H. pylori mutants carrying arsS allels from the related ε-proteobacteria we demonstrate that WS1818 of W. succinogenes efficiently responds to acidic pH.Conclusions/SignificanceWe show that H94 in the input domain of ArsS is crucial for acid perception in H. pylori 26695. In addition our data suggest that ArsS is able to adopt different conformations depending on the degree of protonation of acidic amino acids in the input domain. This might result in different activation states of the histidine kinase allowing a gradual transcriptional response to low pH conditions. Although retaining considerable similarity to ArsS the orthologous proteins of H. hepaticus and C. jejuni may have evolved to sensors of a different environmental stimulus in accordance with the non gastric habitat of these bacteria.
Highlights
The human pathogen Helicobacter pylori thrives in the mucous layer covering the gastric epithelium
Conclusions/Significance: We show that H94 in the input domain of ArsS is crucial for acid perception in H. pylori 26695
Liquid cultures were grown in brain heart infusion (BHI) broth containing Skirrow’s antibiotic supplement and 10% fetal calf serum (FCS)
Summary
The human pathogen Helicobacter pylori thrives in the mucous layer covering the gastric epithelium. It was assumed that protonation of specific amino acid residues in the periplasmic input domain of ArsS eliciting a conformational change of the histidine kinase is involved in pH sensing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.