Abstract

Transient phosphorylation of histidine characterizes the two-component systems in prokaryotes that control important physiological functions, but analogous events have not been implicated in signal transduction in mammalian cells. To explore histidine phosphorylation during activation of human cells, stimulated platelets were analyzed for the formation of protein phosphohistidine in a model system employing P-selectin. P-selectin, a leukocyte adhesion molecule, undergoes rapid phosphorylation and selective dephosphorylation of tyrosine, serine, and threonine. We now establish that phosphorylation following platelet activation with thrombin or collagen generates phosphohistidine at histidines on the cytoplasmic tail of P-selectin. With thrombin stimulation, the kinetics of phosphohistidine appearance and disappearance on P-selectin are very rapid. Platelets exhibit a novel ligand-induced signaling pathway to generate phosphohistidine. These results provide direct biochemical evidence for the induction of rapid and reversible histidine phosphorylation in mammalian cells upon cell activation and represent a novel paradigm for mammalian cell signaling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.