Abstract

Eosinophils are essential inflammatory cells in the pathogenesis of asthma and atopic conditions. Histamine, released from mast cells and basophils in response to allergen exposure, is a critical mediator in the allergic response. Histamine exerts its effects via four unequivocally characterized histamine receptors, H 1 - 4 . Several functions of eosinophils have previously been shown to be stimulated by histamine. However, its effects on eosinophil apoptosis are unknown. The aim of the present study was to resolve the effects of histamine on constitutive apoptosis of human eosinophils and on the survival-enhancing action of interleukin (IL)-5. Additional experiments were conducted to elucidate the histamine receptor(s) involved in any response seen and the associated signal transduction cascade. Human isolated peripheral blood eosinophils were cultured in the absence or presence of histamine, IL-5 and receptor antagonists/agonists or mediator inhibitors/analogues. Apoptosis was assessed by measuring the relative DNA content of propidium iodide (PI)-stained cells and the effects were confirmed by morphological analysis with bright field microscopy. Caspase activities were assessed by using commercial Caspase- Glo ® 3/7, 8 and 9 luminescence assays. Histamine ( 10 – 100 μ M ) partially reversed IL-5-induced human eosinophil survival by enhancing apoptosis as assessed by measuring the relative DNA content of PI-stained cells. This effect was not mediated through any of the known histamine receptors or through non-specific activation of 5-hydroxytryptamine receptors or α -adrenoceptors. Moreover, the reversal of IL-5-inhibited eosinophil apoptosis by histamine seemed not to utilize the conventional intracellular second-messenger pathways including cyclic AMP, protein kinase A or phospholipase C. Inhibition of caspase 6 and caspases 1, 10 or 12 reversed the effects of histamine but also inhibited apoptosis in general. In conclusion, the data presented herein indicate that histamine induces human eosinophil apoptosis in the presence of a survival-prolonging cytokine by a mechanism that does not apparently involve the activation of any of the currently known histamine receptor subtypes. The possibility exists that another, as yet unidentified, histamine receptor may exist in human eosinophils that regulates survival, although the participation of histamine receptor-independent mechanisms cannot be excluded.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.