Abstract

We had reported that activation of presynaptic histamine H(3)-receptors inhibits norepinephrine exocytosis from depolarized cardiac sympathetic nerve endings, an action associated with a marked decrease in intraneuronal Ca(2+) that we ascribed to a decreased Ca(2+) influx. An H(3)-receptor-mediated inhibition of cAMP-dependent phosphorylation of Ca(2+) channels could cause a sequential attenuation of Ca(2+) influx, intraneuronal Ca(2+) and norepinephrine exocytosis. We tested this hypothesis in sympathetic nerve endings (cardiac synaptosomes) expressing native H(3)-receptors and in human neuroblastoma SH-SY5Y cells transfected with H(3)-receptors. Norepinephrine exocytosis was elicited by K(+) or by stimulation of adenylyl cyclase with forskolin. H(3)-receptor activation markedly attenuated the K(+)- and forskolin-induced norepinephrine exocytosis; pretreatment with pertussis toxin prevented this effect. Similar to forskolin, 8-bromo-cAMP elicited norepinephrine exocytosis but, unlike forskolin, it was unaffected by H(3)-receptor activation, demonstrating that inhibition of adenylyl cyclase is a pivotal step in the H(3)-receptor transductional cascade. Indeed, we found that H(3)-receptor activation attenuated norepinephrine exocytosis concomitantly with a decrease in intracellular cAMP and PKA activity in SH-SY5Y-H(3) cells. Moreover, pharmacological PKA inhibition acted synergistically with H(3)-receptor activation to reduce K(+)-induced peak intracellular Ca(2+) in SH-SY5Y-H(3) cells and norepinephrine exocytosis in cardiac synaptosomes. Furthermore, H(3)-receptor activation synergized with N- and L-type Ca(2+) channel blockers to reduce norepinephrine exocytosis in cardiac synaptosomes. Our findings suggest that the H(3)-receptor-mediated inhibition of norepinephrine exocytosis from cardiac sympathetic nerves results sequentially from H(3)-receptor-G(i)/G(o) coupling, inhibition of adenylyl cyclase activity, and decreased cAMP formation, leading to diminished PKA activity, and thus, decreased Ca(2+) influx through voltage-operated Ca(2+) channels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.