Abstract
Previously, retinopetal axons containing histamine and dopaminergic neurons expressing histamine H(1)-receptor had been localized in mouse retinas using anatomic techniques. The goal of these experiments was to demonstrate that these receptors are functional. Dopaminergic cells were acutely isolated from retinas of transgenic mice expressing red fluorescent protein under control of the tyrosine hydroxylase promoter and loaded with the calcium indicator Fura-2. Under control conditions, there were spontaneous oscillations in the levels of free intracellular calcium in dopaminergic cells. These oscillations were abolished in nominally calcium-free extracellular medium and in 1 μM tetrodotoxin, findings suggesting that the oscillations were mediated by calcium entry across the plasma membrane in response to sodium-dependent action potentials. Histamine increased the mean free intracellular calcium in the dopaminergic cells by increasing the frequency and/or amplitude of the calcium oscillations. The effects of histamine were dose-dependent and reached maximum at 5 μM. With this dose, there was a 65% increase in the mean free intracellular calcium concentration. The histamine H(1)-receptor antagonist, pyrilamine, blocked the effects of 5 μM histamine when applied at 50 μM. The selective histamine H(1)-receptor agonists, 2-(3-trifluoromethylphenyl) histamine and methylhistaprodifen significantly increased mean free intracellular calcium when applied at 5 μM. Histamine released from retinopetal axons in the mouse retina can elevate intracellular calcium levels in the perikarya of dopaminergic cells via the activation of histamine H(1)-receptors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.