Abstract

Sepsis-induced acute kidney injury is associated with inflammatory dysregulations within the kidney. This study aimed to explore the renal protective effect of hispidulin on suppressing the apoptosis rate, and inhibiting reactive oxygen species production and inflammatory response after cecal puncture (CLP) operation. In order to gain a deeper understanding of the relationship between sepsis and acute kidney injury, the CLP induced kidney injury animal model was established. The automated biochemical analyzer was used to measure the kidney function related biomarkers including serum cystatin C (ScysC), blood urea nitrogen (BUN), and serum creatinine (Scr). The pathological changes of damaged kidney tissues were detected by hematoxylin and eosin (H&E) staining. The expression of inflammatory cytokines including tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β), and interleukin 6 (IL-6) were detected by their corresponding test kits and Real-Time Quantitative Reverse Transcription PCR (qRT-PCR). The level of reactive oxygen species production-related protein including myeloperoxidase (MPO), glutathione (GSH), superoxide dismutase (SOD), and malondialdehyde (MDA) in kidney tissue from each group were quantized using Enzyme-linked immunosorbent assay (ELISA). The protein expression was measured using western blot and the apoptotic rate of kidney tissue was measured by terminal deoxynucleotidyl transferase Deoxyuridine Triphosphate (dUTP) nick end labeling (TUNEL) assay. Our results revealed that hispidulin has the protective ability in sepsis-induced acute kidney injury. The potential mechanism of hispidulin on sepsis-induced cell apoptosis, oxidative stress and inflammatory response was also investigated. Finally, our results highlighted that hispidulin exerted a protective effects on CLP-induced acute kidney injury by suppressing the protein kinase B (AKT) and Nuclear factor kappa B (NF-κB) signaling pathways. In summary, the current study provided a piece of novel evidence, that hispidulin can be explored as a potential drug in CLP-induced acute kidney injury by examining its effects on suppressed the oxidative stress, inflammatory responses, and apoptosis in kidney tissue.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.