Abstract

Hispidulin is a flavonoid isolated from Clerodendrum inerme that was found to inhibit intractable motor tics. Previously, we found that hispidulin attenuates hyperlocomotion and the disrupted prepulse inhibition induced by methamphetamine and N-methyl-d-aspartate (NMDA) receptor antagonists, two phenotypes of schizophrenia resembling positive symptoms. Hispidulin can inhibit COMT, a dopamine-metabolizing enzyme in the prefrontal cortex (PFC) that is important for social interaction. Here, we investigated whether hispidulin would affect social withdrawal, one of the negative symptoms of schizophrenia. We examined whether acute administration of hispidulin would attenuate social withdrawal in two mice models, juvenile isolated disrupted-in-schizophrenia-1 mutant (mutDISC1) mice and chronic phencyclidine (PCP)-treated naïve mice. In chronic PCP-treated mice, hispidulin (10 mg·kg-1 , i.p.) attenuated social withdrawal similar to that observed with dopamine D1 receptor antagonist (SCH-23390, 0.02 mg·kg-1 , i.p.) and was mimicked by the selective COMT inhibitor, OR-486 (10 mg·kg-1 , i.p.). Hispidulin increased extracellular dopamine levels in the PFC of chronic PCP-treated mice. In isolated mutDISC1 mice, hispidulin also reversed social withdrawal. In both models, intra-PFC microinjection of a D1 agonist (SKF-81297: 10 nmol/mouse/bilateral) reversed the impairment of Ser897 phosphorylation at the GluN1 subunit of NMDA receptors, suggesting the association between GluN1 Ser897 -phosphorylation and D1 activation in the PFC exits in both models. Hispidulin attenuated social withdrawal by activating D1 receptors indirectly through elevated dopamine levels in the PFC by COMT inhibition. This nature of hispidulin suggests that it a potential novel therapeutic candidate for the treatment of negative symptoms in schizophrenia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.