Abstract
Although genome-wide association studies (GWAS) have successfully identified thousands of single nucleotide polymorphisms (SNPs) associated with common diseases, these observations are limited for fully explaining "missing heritability". Determining gene-gene interactions (GGI) are one possible avenue for addressing the missing heritability problem. While many statistical approaches have been proposed to detect GGI, most of these focus primarily on SNP-to-SNP interactions. While there are many advantages of gene-based GGI analyses, such as reducing the burden of multiple-testing correction, and increasing power by aggregating multiple causal signals across SNPs in specific genes, only a few methods are available. In this study, we proposed a new statistical approach for gene-based GGI analysis, "Hierarchical structural CoMponent analysis of Gene-Gene Interactions" (HisCoM-GGI). HisCoM-GGI is based on generalized structured component analysis, and can consider hierarchical structural relationships between genes and SNPs. For a pair of genes, HisCoM-GGI first effectively summarizes all possible pairwise SNP-SNP interactions into a latent variable, from which it then performs GGI analysis. HisCoM-GGI can evaluate both gene-level and SNP-level interactions. Through simulation studies, HisCoM-GGI demonstrated higher statistical power than existing gene-based GGI methods, in analyzing a GWAS of a Korean population for identifying GGI associated with body mass index. Resultantly, HisCoM-GGI successfully identified 14 potential GGI, two of which, (NCOR2 <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mo>×</mml:mo></mml:math> SPOCK1) and (LINGO2 <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mo>×</mml:mo></mml:math> ZNF385D) were successfully replicated in independent datasets. We conclude that HisCoM-GGI method may be a valuable tool for genome to identify GGI in missing heritability, allowing us to better understand the biological genetic mechanisms of complex traits. We conclude that HisCoM-GGI method may be a valuable tool for genome to identify GGI in missing heritability, allowing us to better understand biological genetic mechanisms of complex traits. An implementation of HisCoM-GGI can be downloaded from the website ( http://statgen.snu.ac.kr/software/hiscom-ggi ).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Bioinformatics and Computational Biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.