Abstract
Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) and RuBisCO-like protein (RLP) from Bacillus subtilis catalyze mechanistically similar enolase reactions. Both enzymes require carbamylation of the ε-amino group of the active site lysine during activation to generate the binding site of the essential Mg2+ ion. His267 forms a possible hydrogen bond with the carbamate of the active site Lys176 in B. subtilis RLP. This active site histidine is completely conserved in RLPs and RuBisCO. H267Q, H267N and H267A mutant enzymes required higher CO2 concentrations for maximal activity than wild-type enzyme, suggesting that the histidine is involved in high affinity for activator CO2 in Bacillus RLP. These mutations showed weak effects on the catalysis of RLP, whereas this residue is reportedly essential for catalysis in RuBisCO but is not involved in the carbamylation. The different functions of the active site histidine in RLP and RuBisCO are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.