Abstract
One proposed toxic mechanism of Bacillus thuringiensis Cry δ-endotoxins involves pore formation in target membranes by the α4-α5 transmembrane hairpin constituting their pore-forming domain. Here, nine selected charged and uncharged polar residues in the pore-lining α4 of the Cry4Aa mosquito-active toxin were substituted with Ala. All mutant toxins, i.e., D169A, R171A, Q173A, H178A, Y179A, H180A, Q182A, N183A and E187A, were over-expressed in Escherichia coli as 130-kDa protoxin inclusions at levels comparable to the wild-type toxin. Bioassays against Aedes aegypti larvae revealed that only H178A and H180A mutants displayed a drastic reduction in biotoxicity, albeit almost complete insolubility observed for H178A, but not for H180A inclusions. Further mutagenic analysis showed that replacements of His180 with charged (Arg, Lys, Asp, Glu), small uncharged polar (Ser, Cys) or small non-polar (Gly, Val) residues severely impaired the biotoxicity, unlike substitutions with relatively large uncharged (Asn, Gln, Leu) or aromatic (Phe, Tyr, Trp) residues. Similar to the trypsin-activated wild-type toxin, both bio-active and -inactive H180 mutants were still capable of releasing entrapped calcein from lipid vesicles and producing cation-selective channels with ~130-pS maximum conductance. Analysis of the Cry4Aa structure revealed the existence of a hydrophobic cavity near the critical His180 side-chain. Analysis of simulated structures revealed that His180-to-smaller residue conversions create a gap disrupting such cavity's hydrophobicity and hence structural arrangements of the α4-α5 hairpin. Altogether, our data disclose a critical involvement in Cry4Aa-biotoxicity of His180 exclusively present in the lumen-facing α4 for providing proper environment for the α4-α5 hairpin prior to membrane-inserted pore formation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.