Abstract
The Hirota variety parameterizes solutions to the KP equation arising from a degenerate Riemann theta function. In this work, we study in detail the Hirota variety arising from a rational nodal curve. Of particular interest is the irreducible subvariety defined as the image of a parameterization map, we call this the main component. Proving that this is an irreducible component of the Hirota variety corresponds to solving a weak Schottky problem for rational nodal curves. We solve this problem up to genus nine using computational tools.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.