Abstract

Online labor marketplaces facilitate the efficient matching of employers and workers across geographical boundaries. The exponential growth of this nascent online phenomenon holds important social and economic implications, as the hiring decisions made on these online platforms implicate the incomes of millions of workers worldwide. Despite this importance, limited effort has been devoted to understanding whether potential hiring biases exist in online labor platforms and how they affect hiring outcomes. Using a novel proprietary dataset from a leading online labor platform, we investigate the impact of gender-based stereotypes on hiring outcomes. After accounting for endogeneity via a holistic set of job and worker controls, a matched sample approach, and a quasi-experimental technique, we find evidence of a positive hiring bias in favor of female workers. We find that the observed hiring bias diminishes as employers gain more hiring experience on the platform. In addition, the female hiring bias appears to stem solely from the consideration of applicants from developing countries, and not those from developed countries. Sub-analyses show that women are preferred in feminine-typed occupations while men do not enjoy higher hiring likelihoods in masculine-typed occupations. We also find that female employers are more susceptible to the female hiring bias compared to male employers. We further run an experiment to uncover the underlying gender-specific traits that could influence hiring outcomes. Our findings provide key insights for several groups of stakeholders including policymakers, platform owners, hiring managers, and workers. Managerial and practical implications are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.