Abstract

Low-latency deep spiking neural networks (SNNs) have become a promising alternative to conventional artificial neural networks (ANNs) because of their potential for increased energy efficiency on event-driven neuromorphic hardware. Neural networks, including SNNs, however, are subject to various adversarial attacks and must be trained to remain resilient against such attacks for many applications. Nevertheless, due to prohibitively high training costs associated with SNNs, an analysis and optimization of deep SNNs under various adversarial attacks have been largely overlooked. In this paper, we first present a detailed analysis of the inherent robustness of low-latency SNNs against popular gradient-based attacks, namely fast gradient sign method (FGSM) and projected gradient descent (PGD). Motivated by this analysis, to harness the model’s robustness against these attacks we present an SNN training algorithm that uses crafted input noise and incurs no additional training time. To evaluate the merits of our algorithm, we conducted extensive experiments with variants of VGG and ResNet on both CIFAR-10 and CIFAR-100 dataset. Compared to standard trained direct-input SNNs, our trained models yield improved classification accuracy of up to 13.7% and 10.1% on FGSM and PGD attack generated images, respectively, with negligible loss in clean image accuracy. Our models also outperform inherently-robust SNNs trained on rate-coded inputs with improved or similar classification performance on attack-generated images while having up to 25× and ∼4.6× lower latency and computation energy, respectively. For reproducibility, we have open-sourced the code at github.com/ksouvik52/hiresnn2021.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.