Abstract
Background and objectivesConvolutional neural networks (CNNs) are the most widely used deep-learning framework for decoding electroencephalograms (EEGs) due to their exceptional ability to extract hierarchical features from high-dimensional EEG data. Traditionally, CNNs have primarily utilized multi-channel raw EEG data as the input tensor; however, the performance of CNN-based EEG decoding may be enhanced by incorporating phase information alongside amplitude information. MethodsThis study introduces a novel CNN architecture called the Hilbert-transformed (HT) and raw EEG network (HiRENet), which incorporates both raw and HT EEG as inputs. This concurrent use of HT and raw EEG aims to integrate phase information with existing amplitude information, potentially offering a more comprehensive reflection of functional connectivity across various brain regions. The HiRENet model was developed using two CNN frameworks: ShallowFBCSPNet and a CNN with a residual block (ResCNN). The performance of the HiRENet model was assessed using a lab-made EEG database to classify human emotions, comparing three input modalities: raw EEG, HT EEG, and a combination of both signals. Additionally, the computational complexity was evaluated to validate the computational efficiency of the ResCNN design. ResultsThe HiRENet model based on ResCNN achieved the highest classification accuracy, with 86.03% for valence and 84.01% for arousal classifications, surpassing traditional CNN methodologies. Considering computational efficiency, ResCNN demonstrated superiority over ShallowFBCSPNet in terms of speed and inference time, despite having a higher parameter count. ConclusionOur experimental results showed that the proposed HiRENet can be potentially used as a new option to improve the overall performance for deep learning-based EEG decoding problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.