Abstract

Heterogeneous Chip Multiprocessors have been shown to provide significant performance and energy efficiency gains over homogeneous designs. Recent research has expanded the dimensions of heterogeneity to include diverse Instruction Set Architectures, called Heterogeneous-ISA Chip Multiprocessors. This work leverages such an architecture to realize substantial new security benefits, and in particular, to thwart Return-Oriented Programming. This paper proposes a novel security defense called HIPStR -- Heterogeneous-ISA Program State Relocation -- that performs dynamic randomization of run-time program state, both within and across ISAs. This technique outperforms the state-of-the-art just-in-time code reuse (JIT-ROP) defense by an average of 15.6%, while simultaneously providing greater security guarantees against classic return-into-libc, ROP, JOP, brute force, JIT-ROP, and several evasive variants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.