Abstract

Inherited ichthyoses represent a large heterogeneous group of skin disorders characterised by impaired epidermal barrier function and disturbed cornification. Current knowledge about disease mechanisms has been uncovered mainly through the use of mouse models or human skin organotypic models. However, most mouse lines suffer from severe epidermal barrier defects causing neonatal death and human keratinocytes have very limited proliferation ability in vitro. Therefore, the development of disease models based on patient derived human induced pluripotent stem cells (hiPSCs) is highly relevant. For this purpose, we have generated hiPSCs from patients with congenital ichthyosis, either non-syndromic autosomal recessive congenital ichthyosis (ARCI) or the ichthyosis syndrome trichothiodystrophy (TTD). hiPSCs were successfully differentiated into basal keratinocyte-like cells (hiPSC-bKs), with high expression of epidermal keratins. In the presence of higher calcium concentrations, terminal differentiation of hiPSC-bKs was induced and markers KRT1 and IVL expressed. TTD1 hiPSC-bKs showed reduced expression of FLG, SPRR2B and lipoxygenase genes. ARCI hiPSC-bKs showed more severe defects, with downregulation of several cornification genes. The application of hiPSC technology to TTD1 and ARCI demonstrates the successful generation of in vitro models mimicking the disease phenotypes, proving a valuable system both for further molecular investigations and drug development for ichthyosis patients.

Highlights

  • This article is an open access articleInherited ichthyoses consist of a group of rare disorders of cornification, characterized by skin scaling and hyperkeratosis, and are present as both non-syndromic or syndromic forms [1,2]

  • Generation of Induced Pluripotent Stem Cells iPSCs lines were generated by lentiviral transfection of dermal fibroblasts extracted from ichthyosis patients and control donors and expanded in human embryonic stem cell (HES) media in the presence of immortalized CF1 feeder cells

  • Global gene expression analysis using PluritestTM revealed that generated human induced pluripotent stem cells (hiPSCs) lines cluster within the pool of pluripotent cells (ESCs, hiPSCs) while parental human fibroblasts cluster within the differentiated cell pool (Figure 1E)

Read more

Summary

Introduction

Inherited ichthyoses consist of a group of rare disorders of cornification, characterized by skin scaling and hyperkeratosis, and are present as both non-syndromic or syndromic forms [1,2]. Non-syndromic ichthyoses comprise a large spectrum of heterogeneous disorders, including autosomal recessive congenital ichthyosis (ARCI) Trichothiodystrophy (TTD) is a form of syndromic ichthyosis, an autosomal recessive disorder caused by variants in genes encoding subunits of the transcription/repair factor. TTD1 (OMIM 601675) is caused by variants in ERCC2/XPD (OMIM 126340), which encodes a helicase subunit of TFIIH, and typically causes ichthyosis, photosensitivity, hair abnormalities and intellectual and physical disabilities [5]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call