Abstract

Inflammatory response caused by early weaning stress in piglets is associated with various diseases. The Hippophae rhamnoides polysaccharide (HRP) exhibits anti-inflammatory activity and immunomodulatory properties. The mechanisms for the protective effects of HRP on barrier function, inflammatory damage and apoptosis in intestinal porcine epithelial cells (IPEC-J2) induced by the lipopolysaccharide (LPS) are unknown. In this study, we first demonstrated the cytotoxicity of HRP-induced IPEC-J2 cells by reducing cell viability. IPEC-J2 cells were treated with 0–800 μg/mL doses of HRP, and 0–600 μg/mL doses were used in further experiments. Upon exposure to LPS, the viability of IPEC-J2 cells, ROS production, immunoglobulin levels (immunoglobulin M (IgM), immunoglobulin A (IgA) and immunoglobulin G (IgG)) and tight junction protein level (zonula occludens-1 (ZO-1), occluding, claudin-1) decreased. Inflammatory factors (interleukin-1beta (IL-1β), interleukin-6 (IL-6), interleukin-8 (IL-8) and tumor necrosis factor-alpha (TNF-α)) and apoptosis (Bcl-2, Bax, caspase-3, caspase-8 and caspase-9) were increased. Cell morphology and internal structure were damaged in the LPS treatment. Pre-treating cells with HRP (0–600 μg/mL) reduced inflammatory factors levels, apoptosis rate, increased immunoglobulins, tight junction protein levels and relieved cell surface morphology damage. Pre-treatment with HRP also reduced the levels of the Toll-like receptor 4 (TLR4) and Myeloid differentiation factor 88 (MyD88) and inhibited the phosphorylated NF-κB factor-kappa B (NF-κB) in cells induced by LPS. These results show that pre-treatment with HRP protected against LPS-induced IPEC-J2 cell damage through its anti-inflammatory activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call