Abstract

Avian hippocampus (Hp) and nidopallium caudolaterale (NCL) are believed to play key roles in goal-directed behavior. However, it is still unclear whether there are interactions between the two brain regions in the goal-directed behavior of pigeons. To investigate the interactions between the Hp and the NCL in the goal-directed behavior, we recorded local field potential (LFP) signals from the two regions simultaneously when the pigeons performed a goal-directed decision-making task. Amplitude-amplitude coupling analysis revealed that the coupling value between the LFP recorded from the Hp and that from the NCL increased significantly (P < 0.05) in slow gamma-band (40–60 Hz) during the turning area. In addition, the LFP functional network analysis demonstrated the LFP functional connections between the Hp and the NCL increased significantly (P < 0.05) in the turning area. The result of partial directed coherence (PDC) analysis showed that the predominant direction of information flow is thought to be from the Hp to the NCL. These findings suggest that there are causal functional interactions between the Hp and the NCL by which information is transmitted between the two regions relevant to goal-directed behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.