Abstract
Hippocampal integrity is highly susceptible to metabolic dysfunction, yet its mechanisms are not well defined. We studied 126 healthy individuals aged 23–61 years. Insulin resistance (IR) was quantified by measuring steady-state plasma glucose (SSPG) concentration during the insulin suppression test. Body mass index (BMI), adiposity, fasting insulin, glucose, leptin as well as structural neuroimaing with automatic hippocampal subfield segmentation were performed. Data analysis using unsupervised machine learning (k-means clustering) identified two subgroups reflecting a pattern of more pronounced hippocampal volume reduction being concurrently associated with greater adiposity and insulin resistance; the hippocampal volume reductions were uniform across subfields. Individuals in the most deviant subgroup were predominantly women (79 versus 42 %) with higher BMI [27.9 (2.5) versus 30.5 (4.6) kg/m2], IR (SSPG concentration, [156 (61) versus 123 (70) mg/dL] and leptinemia [21.7 (17.0) versus 44.5 (30.4) μg/L]. The use of person-based modeling in healthy individuals suggests that adiposity, insulin resistance and compromised structural hippocampal integrity behave as a composite phenotype; female sex emerged as risk factor for this phenotype.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.